Abstract

Over the past several years, interest in nanoparticle-derived solar cells has increased. This is due to their low material cost, high-potential efficiency, and desirable and tunable optical properties. Using biphasic ligand exchanges, sodium 3-mercapto-1-propanesulfonate (MPS) and sodium 2-mercaptoethane-sulfonate (MES) were successfully exchanged as ligands with oleic acid to create particles that have a higher propensity to move charge in a solar cell. MES and MPS were chosen as ligands due to being shorter and less insulating than oleic acid. The initial as-synthesized CdSe-OLA, and the nanoparticle products of the two ligand exchanges were confirmed by 1H NMR, UV-Vis, and FTIR spectroscopy. These three nanoparticle products were used to synthesize thin-film solar cells characterized by a potentiostat under a halogen lamp.

College

College of Science & Engineering

Department

Chemistry

Location

Kryzsko Commons Ballroom

Start Date

4-20-2022 10:00 AM

End Date

4-20-2022 11:00 AM

Presentation Type

Poster Presentation

Session

1b=10am-11am

Poster Number

16

Share

COinS
 
Apr 20th, 10:00 AM Apr 20th, 11:00 AM

Investigation of Nanoparticle Ligand Systems for Solar Cell Applications

Kryzsko Commons Ballroom

Over the past several years, interest in nanoparticle-derived solar cells has increased. This is due to their low material cost, high-potential efficiency, and desirable and tunable optical properties. Using biphasic ligand exchanges, sodium 3-mercapto-1-propanesulfonate (MPS) and sodium 2-mercaptoethane-sulfonate (MES) were successfully exchanged as ligands with oleic acid to create particles that have a higher propensity to move charge in a solar cell. MES and MPS were chosen as ligands due to being shorter and less insulating than oleic acid. The initial as-synthesized CdSe-OLA, and the nanoparticle products of the two ligand exchanges were confirmed by 1H NMR, UV-Vis, and FTIR spectroscopy. These three nanoparticle products were used to synthesize thin-film solar cells characterized by a potentiostat under a halogen lamp.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.