Axon Determination of Subtype Specific Myelin Ensheathment and Pruning

Erin Dankert
*Winona State University*

Heather Nelson
*Winona State University*

Samantha Lang
*Winona State University*

Madeline Martell
*Winona State University*

Follow this and additional works at: [https://openriver.winona.edu/studentgrants2018](https://openriver.winona.edu/studentgrants2018)

**Recommended Citation**


[https://openriver.winona.edu/studentgrants2018/2](https://openriver.winona.edu/studentgrants2018/2)

This Grant is brought to you for free and open access by the Grants & Sponsored Projects at OpenRiver. It has been accepted for inclusion in Student Research and Creative Projects 2017-2018 by an authorized administrator of OpenRiver. For more information, please contact klarson@winona.edu.
Axon Determination of Subtype Specific Myelin Ensheathment and Pruning
Erin Dankert, Heather Nelson, Samantha Lang, Madeline Martell, A.J. Treichel, Jacob Hines
Biology Department, Winona State University, Winona MN

1. Introduction
In a series of distinct cell behaviors possible and initiate selective ensheathment. Whether sheath initiation, growth, and pruning are determined by oligodendrocytes or properties of individual axons is poorly understood.

2. Does axon subtype direct order and rate of ensheathment?

3. Ablation of projection axons by spinal cord injury

4. Does spinal cord injury affect OL abundance in posterior segments?

5. Does reduction of preferred axon subtypes influence myelination?

6. Do individual axon subtypes determine myelin ensheathment rate?

7. Can oligodendrocytes adaptively shift myelin between axon subtypes?

8. Does axon subtype determine extension and pruning of sheaths?

9. Conclusions and working models

Note: The text is a natural representation of the image, with the main points highlighted.